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“Magic” coordinates

• start with a differential equation
dy

dx
= f (x , y)

• goal: find new variables to get
ds

dr
= g(r)
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• Example:
dy

dx
= y

• find new coordinates (r , s) to simplify problem
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• change back:
x = ln y + C
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y = Cex
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• change coordinates:

dy

dx
=

y

x
+

y2
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=⇒ ds

dr
=

1
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s =

∫
1

r2
dr = −1

r
+ C

• change back:

−1

x
= −x

y
+ C

• solve:

y =
x2

1 + Cx

• Question: how do we come up with r =
y

x
and s = −1

x
?

• Answer: symmetry!
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Transformation flows

• define a one-parameter family of mappings Tε that maps the
plane to itself for each value of the parameter ε

• Examples: Demo

(x̂ , ŷ) = Tε(x , y) = (x + ε, y)

(x̂ , ŷ) = (x , y + ε)

(x̂ , ŷ) = (eεx , y)

(x̂ , ŷ) = (eεx , eεy)

(x̂ , ŷ) = (eεx , e−εy)

(x̂ , ŷ) =
( x

1− εx
,

y

1− εx

)
=

(x , y)

1− εx

(x̂ , ŷ) = (x cos ε− y sin ε, x sin ε+ y cos ε)

http://www.math.ups.edu/~martinj/research/SymmetryDifferentialEquations.html#transformationflows
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(x̂ , ŷ) = (eεx , e−εy)

(x̂ , ŷ) =
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Lie group structure

• each of these transformation flows has certain algebraic
properties:

T0 = Id

Tε ◦ Tδ = Tε+δ

T−1
ε = T−ε

• so each of these is a group under composition

• each flow is also “nice” as a function of ε

• so each is a one-parameter group of transformations that is
“nice” as a function of ε

• these are called one-parameter Lie groups

• now ready to define symmetries of geometric objects
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Symmetries of a curve

• look at the effect of a transformation flow on a geometric
object

• Example: What happens to the unit circle under each of the
previous transformation flows? Demo

• under most of them, the circle is not mapped to itself
• the circle is mapped to itself for rotation through any

angle ε
• the circle has a symmetry for each angle ε so the circle

has a one-parameter symmetry flow (in this case, a
one-parameter Lie symmetry)

• in general, a geometric object in the plane has a symmetry
flow (or a Lie symmetry) if there is a “nice” transformation
flow of the plane that maps that object to itself

http://www.math.ups.edu/~martinj/research/SymmetryDifferentialEquations.html#transformcircle
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First-order differential equations as geometric objects

• geometric view of a first-order ODE as a slope field.

• Examples:

dy

dx
= y
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• to understand how a slope field transforms, first look at how
slopes transform
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Effect of a transformation on slopes

• Example: translation in x

• each point is mapped by (x̂ , ŷ) = (x + ε, y)
• each tangent line segment at (x , y) is mapped to a

tangent line segment at (x̂ , ŷ)

• each transformed tangent line segment has slope m̂ that
is the same as the original slope m so

(x̂ , ŷ , m̂) = Tε(x , y ,m) = (x + ε, y ,m)
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Hx,yL
m

Hx` ,y
`L

m
`

x

y

• each transformed tangent line segment has slope m̂ that
is the same as the original slope m so
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• Example: scaling in x : (x̂ , ŷ) = T (x , y) = (eεx , y)

• tangent line segments will be scaled in the x-direction

• scaling in x will scale run and have no effect on rise so

m̂ =
ˆrise

ˆrun
=

rise

eεrun
= e−ε rise

run
= e−εm

• so (x̂ , ŷ , m̂) = Tε(x , y ,m) = (eεx , y , e−εm)

Demo

http://www.math.ups.edu/~martinj/research/SymmetryDifferentialEquations.html#transformslope
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• tangent line segments will be scaled in the x-direction

Hx,yL
m

Hx` ,y
`L

m
`

x

y

• scaling in x will scale run and have no effect on rise so

m̂ =
ˆrise

ˆrun

=
rise

eεrun
= e−ε rise

run
= e−εm
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Symmetries of a first-order differential equation

• start with a differential equation
dy

dx
= f (x , y).

• look at the effect of a transformation T on a slope field

• Example:
dy

dx
= y under reflection across the x-axis
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• T is a symmetry of the differential equation if the slope field
maps to itself (so each solution is mapped to a solution)
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• our interest is in symmetry under a transformation flow

• Example: explore
dy

dx
= y under various transformation flows

Demo

• translation in x :

a symmetry flow

• scaling in x :

not a symmetry flow

• translation in y :

not a symmetry flow

• scaling in y :

a symmetry flow

• Example: explore
dy

dx
=

y

x
+

y2

x3
under various transformation

flows Demo

• scaling in y :

not a symmetry flow

• projective transformation Tε(x , y) =
(x , y)

1− εx
:

a symmetry
flow

• before working with symmetries of a differential equation, look
at a convenient way to picture a transformation flow

http://www.math.ups.edu/~martinj/research/SymmetryDifferentialEquations.html#transformslopefield1
http://www.math.ups.edu/~martinj/research/SymmetryDifferentialEquations.html#transformslopefield2
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Visualizing a transformation flow

• have looked at how a grid of points moves

• can also look at paths traced out by points

• Example: (x̂ , ŷ) = (eεx , e−εy)
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Computing the tangent vector field

• the tangent vector field is given by

~X =
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dŷ

dε

)∣∣∣∣∣
ε=0

=
(
eεx ,−e−εy

)∣∣∣
ε=0

= (x ,−y)

-2 -1 0 1 2

-2

-1

0

1

2

x

y



Computing the tangent vector field

• the tangent vector field is given by

~X =

(
dx̂

dε
,

dŷ
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• a few more examples of tangent vector fields:

Scaling in x
(x̂ , ŷ) = (eεx , y)

~X = (x , 0)
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Rotation
(x̂ , ŷ) = (x cos ε− y sin ε, x sin ε+ y cos ε)

~X = (−y , x)
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Using a symmetry to solve the differential equation

• find coordinates (r , s) in which the symmetry field is vertical
and uniform

~X = (x2, xy)
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• in the new coordinates, differential equation reduces to an
antiderivative problem since symmetry maps solutions to
solutions by translation in the dependent variable
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• Example: translation in x: ~X = (1, 0)

• from the geometry, can see that choosing r = y , s = x works
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• in these “magic coordinates”, this ODE becomes
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• Example: scaling in y : ~X = (0, y)

• from the geometry, see that r = x and s is some function of
y ; a choice that works is s = ln y
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the differential equation to the new coordinates



• Example: scaling in y : ~X = (0, y)

• from the geometry, see that r = x and s is some function of
y ; a choice that works is s = ln y

~X = (0, y)

-2 -1 0 1 2

-2

-1

0

1

2

x

y

~X = (0, 1)

-2 -1 0 1 2

-2

-1

0

1

2

r

s

• this is also a symmetry flow for
dy

dx
= y so can now transform

the differential equation to the new coordinates



• Example: scaling in y : ~X = (0, y)

• from the geometry, see that r = x and s is some function of
y ; a choice that works is s = ln y

~X = (0, y)

-2 -1 0 1 2

-2

-1

0

1

2

x

y

~X = (0, 1)

-2 -1 0 1 2

-2

-1

0

1

2

r

s

• this is also a symmetry flow for
dy

dx
= y so can now transform

the differential equation to the new coordinates



• Example: scaling in y : ~X = (0, y)

• from the geometry, see that r = x and s is some function of
y ; a choice that works is s = ln y

~X = (0, y)

-2 -1 0 1 2

-2

-1

0

1

2

x

y

~X = (0, 1)

-2 -1 0 1 2

-2

-1

0

1

2

r

s

• this is also a symmetry flow for
dy

dx
= y so can now transform

the differential equation to the new coordinates



• Example: scaling in y : ~X = (0, y)

• from the geometry, see that r = x and s is some function of
y ; a choice that works is s = ln y

~X = (0, y)

-2 -1 0 1 2

-2

-1

0

1

2

x

y

~X = (0, 1)

-2 -1 0 1 2

-2

-1

0

1

2

r

s

• this is also a symmetry flow for
dy

dx
= y so can now transform

the differential equation to the new coordinates



Finding “magic” coordinates

• choose r(x , y) so that r = constant curves are tangent to
~X = (ξ, η)

• Example: ~X = (x2, xy)

• equivalent to choosing r(x , y) so that the derivative in the
direction of ~X is 0:

~X · ~∇r = ξ
∂r

∂x
+ η

∂r

∂y
= 0
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• choose s(x , y) so that s = constant curves are nowhere
tangent to r = constant curves and the derivative in the
direction of ~X is uniform:

~X · ~∇s = ξ
∂s

∂x
+ η

∂s

∂y
= 1

• Example: ~X = (x2, xy)

• looks intimidating but not so bad in practice since need only a
specific solution rather than the general solution
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• Example: ~X = (x2, xy)

• must find a solution to

x2 ∂r

∂x
+ xy

∂r

∂y
= 0

x2 ∂s

∂x
+ xy

∂s

∂y
= 1

• top equation:r is constant along curves given by

dx

x2
=

dy

xy
=⇒ dx

x
=

dy

y
=⇒ y

x
= constant so r =

y

x
works

• solve bottom equation by looking for s depending only on x so

x2 ∂s

∂x
+ xy · 0 = 1 =⇒ ∂s

∂x
=

1

x2
=⇒ s = −1

x

• these are the “magic” coordinates we used at the start
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Review the general plan

• start with a differential equation in the form
dy

dx
= f (x , y)

meaning slopes can vary in both x and y

• find a symmetry flow for the differential equation with tangent
vector field ~X = (ξ, η)

Wait a minute, how do we do that!?

• for that symmetry flow, find new coordinates r and s so that
the tangent vector field is ~X = (0, 1)

• in the new coordinates, slopes can vary only in r and not in s
since translation in s maps slope field to slope field

• thus, in the new coordinates, the differential equation has the

form
ds

dr
= g(r)

• integrate!

• change back to the original coordinates
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Finding the symmetries of a differential equation

• defining condition: (x̂ , ŷ) = Tε(x , y) is a symmetry flow if

dy

dx
= f (x , y) =⇒ dŷ

dx̂
= f (x̂ , ŷ)

• strategy: determine the tangent vector field ~X = (ξ, η) by
linearizing the defining condition

• start with

(x̂ , ŷ) = (x , y) + ε(ξ, η) + higher-order terms to be ignored

• substitute into defining condition:

d(y + ε η)

d(x + ε ξ)
= f (x + ε ξ, y + ε η)

• after the dust settles:

∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• first-order linear PDE for ξ(x , y) and η(x , y)
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• strategy: determine the tangent vector field ~X = (ξ, η) by
linearizing the defining condition

• start with
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(x̂ , ŷ) = (x , y) + ε(ξ, η) + higher-order terms to be ignored

• substitute into defining condition:

d(y + ε η)

d(x + ε ξ)
= f (x + ε ξ, y + ε η)

• after the dust settles:

∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• first-order linear PDE for ξ(x , y) and η(x , y)



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ
• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ
• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ

• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ
• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ
• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ
• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ
• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



∂η

∂x
+ f
(∂η
∂y
− ∂ξ

∂x

)
− f 2 ∂ξ

∂y
=
∂f

∂x
ξ +

∂f

∂y
η

• Example:
dy

dx
= y so f (x , y) = y

• try ξ = ax + by + c and η = αx + βy + γ
• substitute:

α + (β − a)y − by2 = αx + βy + γ

• match coefficients:

1 : α = γ

x : 0 = α

y : β − a = β

y2 : b = 0

=⇒
ξ = c

η = βy

• so ~X = (1, 0) and ~X = (0, y) are symmetry vector fields



Topics for another time

• Classifying first-order ODEs by symmetry

• Symmetries of higher-order ODEs

• Symmetries of PDEs

• Finding invariant solutions (example: fundamental solution for
the heat equation)

• Algebraic structure of symmetries: Lie groups and Lie algebras

• Variational symmetries

• Nonclassical symmetries
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