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e find new coordinates (r, s) to simplify problem
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e find new coordinates (r, s) to simplify problem
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Using “magic” coordinates

e change coordinates:
dy ds 1
T dr Ty
e integrate:
SZ/idrzlnr+C

e change back:
x=Iny+C

e solve:
X

y = Ce
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Another example of “magic’ coordinates
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Another example of “magic’ coordinates

d 2
e Example: Yy _Yy + y—3
dx x X
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e change coordinates:
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e change coordinates:

dy y y? ds
_— = — —_ = — -
dx x + x3 dr r?
e integrate:
1
S = / -5 dr = —— + C
r r
e change back:
1
— i + C
X y
e solve:
Y= 14 Cx
. . y 1
e Question: how do we come up with r == and s = ——7

b%s X
e Answer: symmetry!
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Transforming the plane

e define a mapping T of the plane to itself
e Example: reflection across the y-axis:
y

X,¥) ) (xy)

e denote this

(5275}) = T(va) = (_Xa}/)
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e Examples:
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Lie group structure

e each of these transformation flows has certain algebraic

properties:
To=1d
TeoTs = Teys
T l=T.

e so each of these is a group under composition
e each flow is also “nice” as a function of ¢

e so each is a one-parameter group of transformations that is
“nice” as a function of ¢

o these are called one-parameter Lie groups

e now ready to define symmetries of geometric objects
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Symmetries of a curve

e look at the effect of a transformation flow on a geometric
object
e Example: What happens to the unit circle under each of the
previous transformation flows?
e under most of them, the circle is not mapped to itself
e the circle is mapped to itself for rotation through any
angle €
e the circle has a symmetry for each angle € so the circle
has a one-parameter symmetry flow (in this case, a
one-parameter Lie symmetry)
e in general, a geometric object in the plane has a symmetry
flow (or a Lie symmetry) if there is a “nice” transformation
flow of the plane that maps that object to itself
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e geometric view of a first-order ODE as a slope field.
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First-order differential equations as geometric objects

e geometric view of a first-order ODE as a slope field.

e Examples:
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to understand how a slope field transforms, first look at how
slopes transform
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Effect of a transformation on slopes

e Example: translation in x
e each point is mapped by (X,7) = (x +¢€,y)
e each tangent line segment at (x, y) is mapped to a

tangent line segment at (%, ¥)
y

e each transformed tangent line segment has slope /M that
is the same as the original slope m so

(%,9,M) = Te(x,y,m) = (x+¢€,y,m)



e Example: scaling in x: (%X,9) = T(x,y) = (e°x,y)
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Symmetries of a first-order differential equation

d
e start with a differential equation d—y =f(x,y).
Ix
e look at the effect of a transformation T on a slope field

e Example: %:y under reflection across the x-axis
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Symmetries of a first-order differential equation

d
e start with a differential equation d—y =f(x,y).
Ix
e look at the effect of a transformation T on a slope field

e Example: % = y under reflection across the x-axis
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e T is a symmetry of the differential equation if the slope field
maps to itself (so each solution is mapped to a solution)
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e Example: explore Y y under various transformation flows

dx

translation in x: a symmetry flow

e scaling in x: not a symmetry flow
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2
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e Example: explore —— = = + = under various transformation
dx x x
flows
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e Example: explore Y y under various transformation flows

dx

translation in x: a symmetry flow

e scaling in x: not a symmetry flow
e translation in y: not a symmetry flow
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2
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e Example: explore —— = = + = under various transformation
dx x x
flows
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e projective transformation T.(x,y) =
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e our interest is in symmetry under a transformation flow

d . .
e Example: explore Y y under various transformation flows

dx

translation in x: a symmetry flow

e scaling in x: not a symmetry flow
e translation in y: not a symmetry flow
e scaling in y: a symmetry flow
2
dy _y ¥y

e Example: explore —— = = + = under various transformation
dx x x
flows

e scaling in y: not a symmetry flow
(x.y) .
1—ex’

e projective transformation T.(x,y) =
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e our interest is in symmetry under a transformation flow

d . .
e Example: explore Y y under various transformation flows

dx

translation in x: a symmetry flow

e scaling in x: not a symmetry flow
e translation in y: not a symmetry flow
e scaling in y: a symmetry flow
2
dy _y ¥y

e Example: explore = = + —5 under various transformation
dx x x

flows

e scaling in y: not a symmetry flow

X
e projective transformation T.(x,y) = 1( .Y) . @ syﬂrr;r:vetry
— €X
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e our interest is in symmetry under a transformation flow

d . .
e Example: explore d—y = y under various transformation flows
Ix

translation in x: a symmetry flow

e scaling in x: not a symmetry flow
e translation in y: not a symmetry flow
e scaling in y: a symmetry flow
2
dy _y ¥y

e Example: explore = = + —5 under various transformation
dx x x

flows
e scaling in y: not a symmetry flow

(X,y) _a symmetry
1—ex’ flow

e projective transformation T.(x,y) =

e before working with symmetries of a differential equation, look
at a convenient way to picture a transformation flow
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Visualizing a transformation flow

e have looked at how a grid of points moves
e can also look at paths traced out by points

e Example: (X,7) = (e°x, e y)

22—

2200V VNN

S AV

LSSV N NN

P A A T N

[ 17/‘ A A L T \\\\x\i

! S

. — e e LY O = = = - S —

l — N AP A e

J 717\‘\\\\\ A

SNNNANN N s

SO\ / -yd SNKNNANNN S L

RO NNNANANN U

AR [/ Tl XXXNANNV LSS

23 -1 0 1 2 =2 -1 0 1 2
X X

e denote the tangent vector field X = (¢, 7)
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Computing the tangent vector field

e the tangent vector field is given by
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e Example: (X,7) :<
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Scaling in x
(%,9) = (e°x,y)
X =(x,0)
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e a few more examples of tangent vector fields:
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Using a symmetry to solve the differential equation

e find coordinates (r,s) in which the symmetry field is vertical

and uniform

X=(3xy)
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Using a symmetry to solve the differential equation

e find coordinates (r,s) in which the symmetry field is vertical
and uniform
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e in the new coordinates, differential equation reduces to an
antiderivative problem since symmetry maps solutions to
solutions by translation in the dependent variable
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e Example: translation in x: X = (1,0)
e from the geometry, can see that choosing r =y, s
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e Example: translation in x: X = (1,0)
e from the geometry, can see that choosing r =y, s
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e Example: scaling in y: X = (0,y)

e from the geometry, see that r = x and s is some function of

y; a choice that works is s = Iny
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e from the geometry, see that r = x and s is some function of
y; a choice that works is s = Iny

e Example: scaling in y: X = (0,y)
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e Example: scaling in y: X = (0,y)

e from the geometry, see that r = x and s is some function of
y; a choice that works is s = Iny
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X =(0,y)
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e this is also a symmetry flow for

the differential equation to the new coordinates
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e choose s(x, y) so that s = constant curves are nowhere
tangent to r = constant curves and the derivative in the
direction of X is uniform:
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e choose s(x, y) so that s = constant curves are nowhere
tangent to r = constant curves and the derivative in the
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e choose s(x, y) so that s = constant curves are nowhere
tangent to r = constant curves and the derivative in the
direction of X is uniform:

o = 0s Js
X S_gﬁx nf)y
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looks intimidating but not so bad in practice since need only a
specific solution rather than the general solution
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Example: X = (x2, xy)

must find a solution to

or ar
27 =
X O +Xy8y 0
0s 0s
27 _— =
X Bx +Xy8y L

top equation:r is constant along curves given by

dx d d d
—2:—)/ — xX_ Y - X—constantsorfzworks
X Xy X y X X

solve bottom equation by looking for s depending only on x so

x2§+x 0=1 = ﬁ—i - 5*71
Ox yor= Ox  x? X

these are the “magic” coordinates we used at the start
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Review the general plan

d
e start with a differential equation in the form d—y =f(x,y)
Ix
meaning slopes can vary in both x and y

e find a symmetry flow for the differential equation with tangent
vector field X = (&,n7)  Wait a minute, how do we do that!?

e for that symmetry flow, find new coordinates r and s so that
the tangent vector field is X = (0,1)

e in the new coordinates, slopes can vary only in r and not in s
since translation in s maps slope field to slope field

e thus, in the new coordinates, the differential equation has the

ds
f —
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e integrate!

e change back to the original coordinates
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Finding the symmetries of a differential equation

e defining condition: (%X,¥) = T.(x,y) is a symmetry flow if
dy
— =f — =f(X,y

o strategy: determine the tangent vector field X = (&,m) by

linearizing the defining condition
e start with

A

dy
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Finding the symmetries of a differential equation

e defining condition: (%X,¥) = T.(x,y) is a symmetry flow if
dy
— =f — =f(X,y

o strategy: determine the tangent vector field X = (&,m) by

linearizing the defining condition
e start with

A

dy

(%,9) = (x,y) + €(&,n) + higher-order terms to be ignored

e substitute into defining condition:
d(y +e€n)
SR g
e after the dust settles:

on on  0& 2,06 Of of
4+ fl—=—-2)-F=2=—€+ —
Ox + <8y 8x) dy Ox + 8)/77

e first-order linear PDE for £(x,y) and n(x,y)
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ample: -

e Ex



of
206 OF
on 85) B

Qﬂ+f(

=&+ (97)/77
- Ox
dy
dy Ox
dy
ox

+
)=y .
f(x,y -

o L candn

Ie: & by+

p +

Exam b -

[ ] 5_

e try
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e Example: % =ysof(x,y)=y

etry§ =ax+ by +candn=ax+ By -+~
e substitute:

a+(B—a)y—by>=ax+Py+n~
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e Example: % =ysof(x,y)=y

etry =ax+by+candn=ax+ By +~
e substitute:

a+ (B —a)y — by =ax+ By +~

e match coefficients:
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e Example: % =ysof(x,y)=y

etry =ax+by+candn=ax+ By +~
e substitute:

a+ (B —a)y — by =ax+ By +~

e match coefficients:

1 o=
X 0=«
y f—a=p
2
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e Example: % =ysof(x,y)=y

etry =ax+by+candn=ax+ By +~
e substitute:

a+ (B —a)y — by =ax+ By +~

e match coefficients:

1 o=

X 0=a E=c
y: B-a=8 T n=py
2
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e Example: % =ysof(x,y)=y

etry =ax+by+candn=ax+ By +~
e substitute:

a+ (B —a)y — by =ax+ By +~

e match coefficients:

1 o=
X 0=a E=c
y B—a=B T n=py
y? b=20

e s0 X =(1,0) and X = (0, y) are symmetry vector fields
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Topics for another time

o Classifying first-order ODEs by symmetry
e Symmetries of higher-order ODEs
e Symmetries of PDEs

e Finding invariant solutions (example: fundamental solution for
the heat equation)

e Algebraic structure of symmetries: Lie groups and Lie algebras
e Variational symmetries

e Nonclassical symmetries
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for Differential
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Peter Hydon, Symmetry Methods for Differential
Equations: A Beginner's Guide, Cambridge, 2000.

PETER E. HYDON

Pateor J. Olver

Peter Olver, Applications of Lie Groups to Differ- Aot
of Lie Groups

ential Equations 2nd ed., Springer, 1993. to Differential

Equations

Bazee Bibean.
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